Welding Process Fundamentals
نویسندگان
چکیده
WELDING AND JOINING processes are essential for the development of virtually every manufactured product. However, these processes often appear to consume greater fractions of the product cost and to create more of the production difficulties than may be expected. There are a number of reasons that explain this situation. First, welding and joining are multifaceted, both in terms of process variations (such as fastening, adhesive bonding, soldering, brazing, arc welding, diffusion bonding, and resistance welding) and in the disciplines needed for problem solving (such as mechanics, materials science, physics, chemistry, and electronics). An engineer with unusually broad and deep training is required to bring these disciplines together and to apply them effectively to a variety of processes. Second, welding or joining difficulties usually occur far into the manufacturing process, where the relative value of scrapped parts is high. Third, a very large percentage of product failures occur at joints because they are usually located at the highest stress points of an assembly and are therefore the weakest parts of that assembly. Careful attention to weldment design and joining processes can produce great rewards in manufacturing economy and product reliability. The purpose of this Section of the Volume is to discuss the fundamentals of fusion welding processes, with an emphasis on the underlying scientific principles. Because there are many fusion welding processes, one of the greatest difficulties for the manufacturing engineer is to determine which process will produce acceptable properties at the lowest cost. There are no simple answers. Any change in the part geometry, material, value of the end product, or size of the production run, as well as the availability of joining equipment, can influence the choice of joining method. For small lots of complex parts, fastening may be preferable to welding, whereas for long production runs, welds can be stronger and less expensive. The perfect joint is indistinguishable from the material surrounding it. Although some processes, such as diffusion bonding, can achieve results that are very close to this ideal, they are either expensive or restricted to use with just a few materials. There is no universal process that performs adequately on all materials in all geometries. Nevertheless, virtually any material can be joined in some way, although joint properties equal to those of the bulk material cannot always be achieved. The economics of joining a material may limit its usefulness. For example, aluminum is used extensively in aircraft manufacturing and can be joined by using adhesives or fasteners, or by welding. However, none of these processes has proven economical enough to allow the extensive replacement of steel by aluminum in the frames of nonluxury automobiles. An increased use of composites in aircrafts is limited by an inability to achieve adequate joint strength in the original product or to repair a product that has been in service. It is essential that the manufacturing engineer work with the designer from the point of product conception to ensure that compatible materials, processes, and properties are selected for the final assembly. Often, the designer leaves the problem of joining the parts to the manufacturing engineer. This can cause an escalation in cost and a decrease in reliability. If the design has been planned carefully and the parts have been produced accurately, the joining process becomes much easier and cheaper, and both the quality and reliability of the product are enhanced. Generally, any two solids will bond if their surfaces are brought into intimate contact. One factor that generally inhibits this contact is surface contamination. Any freshly produced surface exposed to the atmosphere will absorb oxygen, water vapor, carbon dioxide, and hydrocarbons very rapidly. If it is assumed that each molecule that hits the surface will be absorbed, then the time-pressure value to produce a monolayer of contamination is approximately 0.001 Pa s (10 8 atm s). For example, at a pressure of 1 Pa (10 5 atm), the contamination time is 10 3 s, whereas at 0.1 MPa (1 atm), it is only 10 10 9 s (Ref 1). In fusion welding, intimate interfacial contact is achieved by interposing a liquid of substantially similar composition as the base metal. If the surface contamination is soluble, then it is dissolved in the liquid. If it is insoluble, then it will float away from the liquid-solid interface.
منابع مشابه
The principle Of Tungsten Inert Gas (TIG) Welding Process
Process This chapter presents the principle of tungsten inert gas (TIG) welding process besides important components of TIG welding system and their role. This process is also known as gas tungsten arc welding (GTAW) process. Further, fundamentals of heat generation, arc stability and arc efficiency have also been described. Additionally, comparison of argon and helium as shielded gases has bee...
متن کاملWelding of Plastics: Fundamentals and New Developments
This paper provides a general introduction to welding fundamentals (section 2) followed by sections on a few selected welding processes that have had significant developments or improvements over the last few years. The processes that are discussed are friction welding (section 3), hot plate welding (section 4), ultrasonic welding (section 5), laser/IR welding (section 6), RF welding (section 7...
متن کاملNumerical simulation of dynamic development of keyhole in double-sided arc welding
Double-sided arc welding (DSAW) is a novel process for joining metals that is capable of achieving deep narrow penetration in a single pass with minimized distortion. A clear understanding of the process fundamentals is critical in order to fully examine the potential of DSAW, to guide the further developments of the process, to direct the practicability study, and to design the process paramet...
متن کاملDynamic Behaxior of Gas Metal Arc Welding
Gas Metal arc Welding (GMABQ has become the most addely used process for joining of steel plates due to its high productixity, simplicity of equipment and ease of use. Although the process of melting of the electrode and development of the weld deposit has been studied for 40 years, the dynamic nature of the process has not been studied in detail because accurate models are computationally inte...
متن کاملTig Welding Process Pdf
Tungsten inert gas (TIG) welding, also called as gas tungsten welding 1. (a) Schematic of TIG welding Process (b) Variety of tungsten electrodes. The activated TIG (ATIG) welding process mainly focuses on increasing the depth of penetration and the reduction in the width of weld bead has not been paid. Tungsten inert gas welding, TIG is widely applied in manufacturing process for different The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011